Home
International Journal of Science and Research Archive
International, Peer reviewed, Open access Journal ISSN Approved Journal No. 2582-8185

Main navigation

  • Home
    • Journal Information
    • Abstracting and Indexing
    • Editorial Board Members
    • Reviewer Panel
    • Journal Policies
    • IJSRA CrossMark Policy
    • Publication Ethics
    • Instructions for Authors
    • Article processing fee
    • Track Manuscript Status
    • Get Publication Certificate
    • Current Issue
    • Issue in Progress
    • Past Issues
    • Become a Reviewer panel member
    • Join as Editorial Board Member
  • Contact us
  • Downloads

ISSN Approved Journal || eISSN: 2582-8185 || CODEN: IJSRO2 || Impact Factor 8.2 || Google Scholar and CrossRef Indexed

Fast Publication within 48 hours || Low Article Processing Charges || Peer Reviewed and Referred Journal || Free Certificate

Research and review articles are invited for publication in January 2026 (Volume 18, Issue 1)

Advanced machine learning models for real-time decision making in dynamic data environments

Breadcrumb

  • Home
  • Advanced machine learning models for real-time decision making in dynamic data environments

Michael Ehiedu Usiagwu 1, 2, *, Mayowa Timothy Adesina 3 and Johnson Chinonso 4

1 Department of Marketing, Salford University, Manchester, United Kingdom, School of Business. 

2 Department of Accounting, National Open University, Nigeria.

3 Department of Data Analytics. Kansas State University, KS, USA – College of Business.

4 Department of Accounting. Kwara State Polytechnic. Nigeria.

Research Article

International Journal of Science and Research Archive, 2025, 14(02), 852-865

Article DOI: 10.30574/ijsra.2025.14.2.0441

DOI url: https://doi.org/10.30574/ijsra.2025.14.2.0441

Received on 03 January 2025, revised on 08 February 2025; accepted on 11 February 2025

Dynamic dataenvironments presentsignificant challengesdue to their continuousevolution, highvelocity, and heterogeneity. This study explores the application of advanced ensemble machine learning (ML) models for real-time decision-making in these settings. A comprehensive methodology is employed, incorporating ensemble techniques such as XGBoost, LightGBM, CatBoost, and Random Forest to enhance decisionaccuracy, adaptability, and robustness. The research integrates real-time data processing frameworks, featuring micro- batch processing, feature engineering, noise filtering, and synthetic data balancing through SMOTE to address data imbalance and heterogeneity. Hyperparameter tuning and iterative optimization strategies, including grid search and cross-validation, are applied to improve model performance and prevent overfitting. The ensemble framework is evaluated in real-time scenarios, demonstrating its ability to process large-scale dynamic data streams with high accuracy and low latency. The findings underscore the transformative potential of these models in domains like healthcare, finance, and autonomous systems, where real-time decisions are critical.

Ensemble Learning; Real-Time Decision-Making; Dynamic Data Environments; Data Streams; Hyperparameter Tuning; Noise Filtering; Scalability

https://journalijsra.com/sites/default/files/fulltext_pdf/IJSRA-2025-0441.pdf

Preview Article PDF

Michael Ehiedu Usiagwu, Mayowa Timothy Adesina and Johnson Chinonso. Advanced machine learning models for real-time decision making in dynamic data environments. International Journal of Science and Research Archive, 2025, 14(02), 852-865. Article DOI: https://doi.org/10.30574/ijsra.2025.14.2.0441.

Copyright © 2025 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution Liscense 4.0

For Authors: Fast Publication of Research and Review Papers


ISSN Approved Journal publication within 48 hrs in minimum fees USD 35, Impact Factor 8.2


 Submit Paper Online     Google Scholar Indexing Peer Review Process

Footer menu

  • Contact

Copyright © 2026 International Journal of Science and Research Archive - All rights reserved

Developed & Designed by VS Infosolution